Project One
Introduction to the Microcontroller Development System
Complete by:

References:
End of week two

Emulator (summarizing handout)

Schematic for PIC Education Board

Before Lab:

[]
Attend the demo.

[]
On the Lab Teams signup sheet, list a handle together with your name and that of your partner (if you have one). You will need one or two 3.5-inch floppy disks.

Using the emulator:

Please be sure to familiarize yourself with the information in the handout. This information goes into further detail about the emulator than the information presented here in Project One.

[]
Turn on one of the PCs, if necessary. Turn on power to both the PIC Education Board and the emulator.

[]
Logon to the PC using the userid "PIC" (without quotes) and password "PIC" (without quotes). The login process will take 30‑60 seconds while the PC's hard disk is scanned for viruses. If a warning or error occurs during login or bootup, please contact the TA.

[]
See the P1 program attached to this handout. Copy it from a floppy borrowed from the Lab TA onto your floppy disk. You will keep your files on a floppy, rather than on the PC's hard disk. In this way you will have a backup copy that you carry away with you. We also want to avoid misuse of your files by someone else.
WARNING:
All user files are deleted from the PC's hard disk whenever the computer is rebooted or a user logs on.

[]
Select the emulator software by clicking the appropriate button on the taskbar at the bottom of the screen. Load the P1 source file (P1.ASM) into the emulator.

[]
Insert your handle and name(s) somewhere within the first few lines of the program. Be sure that a semicolon is placed at the beginning of the line so that your handle and name(s) will be considered as comments by the assembler.

[]
Save your updated P1 source file.

[]
Assemble your P1 source file. If an error occurred during assembly, modify the source file, save it, and re‑assemble until all errors have been corrected.

NOTE:

Treat all warnings generated during assembly as errors. Several forms of typos will result in warnings being generated during assembly rather than errors. The warnings often result in assembled code that does not perform as expected.

[]
Print a copy of the generated list file, P1.LST, to familiarize yourself with the printing process. Refer to the handout.

[]
Download the assembled program (P1.COD) to the emulator.

NOTE:

This step must be repeated every time the source is reassembled.

WARNING:
Failure to reload the assembled program into the emulator will result in wasting countless hours trying to debug an outdated program.

[]
Verify that the emulator has been setup correctly to emulate the PIC16C74A microcontroller with a 4 MHz clock (for a 1 MHz internal clock rate).

WARNING:
Failure to configure the emulator correctly will result in wasting countless hours trying to debug a flawless program.

[]
Run P1. Press the INC and the DEC keys to monitor how the program echoes the encoder emulator outputs to the lower two LEDs.

[]
Stop the execution of the program.

[]
Often when debugging a program, there is a known point at which you want to stop the program and view what has happened to variables up to that point.. The emulator provides the ability to set breakpoints that allow program execution to be stopped automatically once a specific program location has been reached. Set up a breakpoint at the address label RPG.

[]
Viewing the contents of various PIC registers/RAM variables can be accomplished by setting up a watch window. Add PORTD and OPTION as watch variables. Now that a watch window has been configured, whenever the program stops executing (e.g., by reaching a breakpoint or by single stepping), the values displayed in the watch window will be updated.

[]
When you are ready to begin execution again, you have the option of beginning from reset or of beginning from the point where you stopped. Run from reset to the breakpoint at the beginning of the RPG interrupt handler. Press the INC key to initiate an interrupt.

[]
To facilitate debugging, the emulator supports single-step instruction execution. Single step through the RPG handler, watching the effect of each instruction upon the two watch variables.

[]
Remove the breakpoint.

[]
Set up the MPLAB-ICE 2000 emulator=s trace feature to trigger about ARPG@. Run from reset and press the INC key to cause an interrupt. Stop execution. Look at the trace display, and examine the captured execution of instructions leading up to the RPG trigger point. In particular, back up to where the PIC was executing the mainline code just before it fielded the interrupt. What was the CPU doing at the time of the interrupt? Can the emulator be set up to show the cycle by cycle operation from mainline program to interrupt service routine so you can see how cycles were used in the transition (i.e., the transition indicated on page 76, in Figure 5-2)? What you do not want to do here is have the emulator filter out dummy cycles. Does the operation match that of Figure 5-2?

[]
Now move past the trigger point in the trace display and monitor the operation of the successive instructions upon PORTD and OPTION. Does this give a more helpful view of how the instructions affected these registers?

[]
Set up the emulator to capture just the instruction labeled MainLoop but to do so repeatedly so as to capture the successive times it takes to traverse the mainline loop. Run from reset and then examine the captured results in the trace buffer. Are these times all exactly 10,000 cycles? Or do they vary slightly? If so, how much do they vary and why?

Winding Up

[]
Be sure to save your file(s) onto your floppy disk.

Project One
Microcontroller Development System
Page 2 of 2

