Project Three
Bargraph Intensity

Reference
Section 6.3
Timer0

Project Description
For this project, your code for Project Two should continue to work. In addition, the middle pot is to control the intensity of the LEDs by pulse-width modulating them. Use Timer0 to control the PWM duty cycle.

Analog-to-Digital Converter
The middle potentiometer is connected to the RA1/AN1 input on the PIC. Referring to Figure 10-6 on page 187, load ADCON0 with B’01001001’ each time a conversion is to be initiated:

MOVLF

B’01001001’, ADCON0

;Select ADC=s AN1 input

bsf

ADCON0, GO_DONE

;Start conversion

Then test this GO_DONE bit to wait until it returns to zero before reading the result from the ADRES (A-to-D Result) register.

Timer0 Interrupts
Change the initialization of the INTCON register to include the setting of the T0IE bit shown in Figure 6-5 on page 101. Add to the polling routine in the IntService interrupt service routine the following code

btfsc
INTCON,T0IF

goto
Intensity

where Intensity is the interrupt handler which does the pulse-width modulation steps discussed below. Conclude this handler with

goto
Poll

Intensity Interrupt Handler
Initialize (the bank 1 register) OPTION_REG as shown on page 102 in Figure 6-6. If you set the prescaler to 32, then TMR0 will take 8.192 milliseconds to count through its 256 states. We will divide this interval into two parts as determined by the value, N, obtained from AN1, the analog-to-digital converter input connected to the middle potentiometer. The 8.192 millisecond cycle will produce a pulse-width-modulation frequency which is fast enough to produce no visible blinking on the LEDs (with approximately 122 blinks per second) and yet slow enough so that the CPU will spend a very small percentage of its time controlling the intensity of the LEDs.

Change your code for Project Two so that instead of writing to PORTD, you write to PORTD_CPY. Now you will copy PORTD_CPY to PORTD to turn on the on LEDs for N counts of TMR0. You will clear PORTD to turn off all LEDs for 256-N counts of TMR0.

Note from Figure 6-5 on page 101 that an interrupt can be generated when TMR0 rolls over from 255 to 0. On every other interrupt, clear the T0IF interrupt flag and then control the pulse-width modulation of the LEDs by loading 256-N into TMR0 and turn on the on LEDs. When the alternate interrupts occur, clear the T0IF interrupt flag, turn off all LEDs, and load N into TMR0.

Define a variable called INT_FLAG to keep track of alternate interrupts. Complement it each time that the Intensity handler is entered. Then test bit 0 (or any bit) to distinguish between alternate interrupts.

For any value of N which is 5 or less , clear the T0IF interrupt flag, turn off all LEDs, and do not change TMR0. For any value of N which is 250 or more, clear the T0IF interrupt flag, copy PORTD_CPY to PORTD, and do not change TMR0. With these modifications, we will insure that at least 160 microseconds occur between Timer0 interrupts, plenty of time to complete one servicing before being asked to undertake the next one.

Measuring Duty Cycle
Immediately after copying PORTD_CPY to PORTD set bit 4 of PORTA with

bsf

PORTA,4

Immediately after clearing PORTD clear bit 4 of PORTA with

bcf

PORTA,4

A scope display of the resulting waveform will show the duty cycle.

Measuring CPU Overhead due to LED Intensity Control
Insert

bsf

PORTA,2

as the first instruction of the IntService interrupt service routine. Insert

bcf

PORTA,2

just before the final retfie instruction of IntService. Consider how a scope display of the resulting waveform will give an indication of the percentage of CPU time spent dealing with the LED intensity control.

ADVANCE \d2Project Three
Bargraph Intensity
Page 2 of 2

