Project Five
Display of Character Codes

Project Description
For this project, your code for Project Four should continue to work, subject to the modification that you are to use the ENTER key to toggle the display between several options. Initially, display the same “Press ENTER” message as for Project Four. Thereafter, presses of the ENTER key should toggle between two options. These are your names, from the last project, and the display of character codes, described below. When in the “display character codes” mode, you are to display the following. In the upper left hand corner of the LCD display:

<two hex digit number> <space> <the displayable character coded by this two hex digit number>

The entire bottom row of the LCD display is to display the sixteen displayable characters for the column of the ASCII table in which the above two-hex-digit number resides. For example, if the two-hex-digit number is 4B, then the top row will be

4B K
(because the ASCII code for the letter K is 4B) and the bottom row will be

@ABCDEFGHIJKLMNO
The RPG emulator introduced with Project One (whose function was deleted with Project Two) will be used to increment and decrement a one-byte variable called CHARCODE (initialized to H’30’). Each INC interrupt is to increment CHARCODE, stopping at FF. In like manner each DEC interrupt is to decrement CHARCODE, stopping at 00. It is this number which is to be expressed with two hex digits in the upper-left-hand corner of the display. Likewise, it is this number which is to be used as the code of the displayable character shown in row 1, column 4 of the display. And it is the left-most hex digit that is to determine which column of the ASCII table to show in the second row.

ENTER Key
Each time around the mainline loop, a subroutine named EnterKey is to be called. It compares the state of the ENTER key with what it was last time around the mainline loop. Only if it has changed from one to zero is action to take place. Initialize a variable called ENTFLG to zero. Then, each time the ENTER key is pressed, change ENTFLG as follows 0,1,2,1,2,1,2,1,2,1,2,....

Every tenth of a second, the EnterKey subroutine is to take one of the following three actions. With ENTFLG=0, rewrite “Press ENTER”. With ENTFLG=1, rewrite your names. With ENTFLG=2, call a Character subroutine which will, in turn, update the display as described above. Each time the ENTER key is pressed, first clear the display to make way for the new display (which may not overwrite all character positions).

To clear the display, add two constant display strings to DisplayC_Table, one called _ClrRow1 and the other called _ClrRow2. Calling the DisplayC subroutine when W has been loaded with _ClrRow1-CDS is to write sixteen blank characters to the top row of the display.

DisplayV Subroutine
For the last project, we had a DisplayC subroutine which extracted the bytes of a display string from program memory. For this project you will need a DisplayV subroutine which will extract the bytes of a display string from RAM. Make a copy of the DisplayC subroutine and edit it as follows to create a DisplayV subroutine.

· Change the name of the subroutine in the copy to DisplayV. Change labels in the subroutine accordingly.

· Save pointer in W to FSR.

· Get byte from string into W using indirect addressing (i.e., by using FSR as a pointer to the string entry)

· Increment FSR to point to the next byte

To update the LCD display with a variable display string, load W with its address and call DisplayV.

Row1 Display String
Add the following to your RAM variables:

Row1:6

This will reserve six characters for the display string needed for displaying the four characters in the top row. Initialize the content of Row1 with H’80’, the cursor-positioning code for the upper-left-hand corner of the display. Initialize the content of Row1+3 with H’20’, the ASCII code for a blank character. Initialize the content of Row1+5 with H’00’, the end-of-string designator.

Write a subroutine called ASCIIcode which first copies CHARCODE to Row1+4 and which then fills in Row1+1 and Row1+2 with the ASCII code for each hex digit making up the number in Row1+4. (Use the content of Row1+4, not the content of CHARCODE, when doing this.) For example, if CHARCODE contains H’4B’ (the ASCII code for the letter K), then Row1+4 should be loaded with H’4B’, Row1+1 should be loaded with H’34’ (the ASCII code for the number 4), and Row1+2 should be loaded with H’42’ (the ASCII code for the letter B).

Before calling DisplayV to display the Row1, call ASCIIcode to complete the display string, given a possibly changed value of CHARCODE.

Row2 Display String
Add the following to your RAM variables:

Row2:18

Initialize the content of Row2 with H’C0’, the cursor-positioning code for the lower-left-hand corner of the display. Initialize the content of Row2+17 with H’00’, the end-of-string designator.

Write a subroutine called FillRow2 that copies the content of Row1+4 into W, and forces the lower four bits of W to zero. Then, with FSR loaded with the address of Row2+1, store indirectly. In a loop, increment FSR, increment W by adding 1 to it, and store W indirectly. Keep this up until all sixteen entries between Row2+1 and Row2+16 have been filled. Then return.

Before calling DisplayV to display Row2, call FillRow2 to complete the display string, given a possibly changed value of CHARCODE, as reflected in a changed value of Row1+4.

Character Subroutine
This subroutine calls ASCIIcode, calls FillRow2, loads FSR with the address of the Row1 display string, calls DisplayV, loads FSR with the address of the Row2 display string, calls DisplayV again, and then returns.

ADVANCE \d2Project Five
Display of Character Codes
Page 2 of 2

