Project Six

Temperature Measurement

References
Data sheet
Tmp03_4.pdf (Analog Devices TMP04 temperature sensor data sheet)

(http://www.analog.com/pdf/tmp03_4.pdf)
Example file
Math.asm

Include file
Math.inc

Section 6.5
CCP2 capture mode (Figure 6-10)

Overview
For this project, all the old stuff should continue to work. In addition, add the final screen we will use with the LCD display. Every time the ENTER key is pressed, now change ENTFLG as follows 0,1,2,3,1,2,3,1,2,3,.. With ENTFLG=3, every tenth of a second update a display of the temperature having the format

 71.4OF
(for temperatures under 100OF)

or

104.7OF
(for temperatures over 100OF)

located at the bottom right hand corner of the LCD display.

Temperature Algorithm
The temperature sensor emits a pulse-width-modulated waveform. Define the interval during each period when the waveform is high as T1 and the interval when it is low as T2. Then the temperature, expressed in tenths of a degree Fahrenheit, is

Temperature = 4550 - [7200xT1/T2]

T1 and T2 are going to be measured with the input capture feature of the PIC and will range between 10000 to 30000 (or thereabouts). To maintain accuracy, first do the multiply and then the divide using the math algorithms of math.asm and math.inc.

Example:
T1 = 11424 s
 and T2 = 21683 s

7200 x 11424 = 82252800

82252800 / 21683 = 3793

4550 - 3793 = 757

The temperature in this case is 75.7OF.

Incidently, while the accuracy of the TMP04 temperature sensor is typically about 2OF, the incremental accuracy is much better than this. That is, if a temperature change from 75.7OF to 75.9OF occurs, this change of 0.2OF is much more accurate than the 2OF absolute accuracy would indicate since most of the errors making up the absolute accuracy cancel out when an incremental temperature measurement is made.

Binary to ASCII Conversion
After you have completed the calculation of the temperature, you need to take the two-byte binary result and break it into a three-ASCII-character result. If you divide the two-byte binary value by ten, the remainder will be the units digit value. Add H’30’ to this to convert it to the ASCII code for the digit. Dividing the quotient by ten will yield the tens digit in the new remainder and the hundreds digit in the new quotient.

Math Subroutines
The two files referenced, math.asm and math.inc, are derived from Microchip Technology=s Application Note AN617 entitled “Fixed Point Routines”. If you want to obtain this application note, it is available on Microchip=s web site (http://www.microchip.com). Search that site for AN617 to get the Acrobat version (.pdf) of the file.

Copy into your file only those math subroutines contained in the Amath.asm@ file which you use. Then be sure to insert the line

#include
math.inc

immediately after the cblock ... endc construct already present in your code. The include file not only defines the math macros invoked by any of the math subroutines which you copy from the “math.asm” file, it also adds the RAM variables used by the math routines to the list of variables already defined in your code. The placement of this include statement into your code must occur after your variables have been assigned to addresses (beginning at address H’20’). Note that your code has the construct

cblock
Bank0RAM

 .

 .

endc

whereas the Amath.inc@ file has the construct

cblock

 .

 .

endc

The Microchip assembler uses a parameter with the cblock assembler directive as the address which is to be assigned to the first variable within the construct. The remaining variables are assigned to the consecutive addresses that follow this one. A cblock assembler directive that does not include a parameter (as is the case within the math.inc file) will assign its variables to addresses that begin where a previous “cblock ... endc” construct left off.

All of the math subroutines expect the two operands to be passed to them in two variables called AARG (A argument) and BARG (B argument). The bytes of these two arguments are names, AARGB0, AARGB1,... where the B0 byte represents the most-significant byte. The result of an operation is represented the same way. However, a common error is to extract the result from the wrong bytes. For example, if you divide a 32-bit number by a 16-bit number, the result (in general) can be as large as 32 bits. In our case, the result will be only 16 bits (as you would expect, since to form the temperature it is subtracted from 4550, another 16-bit number). You need to take the 16-bit result from AARGB2 and AAARGB3, not from AARGB0 and AARGB1.

Measuring Time Intervals
Every tenth of a second when the temperature display is to be updated, carry out the calculation of temperature using whatever values of T1 and T2 are available. Update the appropriate display string and send it to the display. Then begin the next temperature measurement by setting up an input capture interrupt when the next rising edge occurs on the CCP2 input. Be sure to clear the interrupt flag before enabling the interrupt. Also note that since this interrupt is enabled by setting a bit of a bank 1 register (i.e., the CCP2IE bit in the PIE2 register), you should set it using indirect addressing. When the interrupt occurs, save CCPR2H and CCPR2L, the captured time of occurrence of the rising edge of the PWM output of the temperature sensor. Now set up to capture the time of occurrence of the next falling edge. Finally, set up to capture the time of occurrence of the next rising edge. When this has been done, disable further CCP2 interrupts and update T1 and T2 with the newly formed values. If T1+T2 is less than forty-five milliseconds, are we assured of collecting a new value of T1 and T2 within the one hundred milliseconds between display updates?

Display String
The temperature will be displayed as seven characters (e.g., 103.4OF). Add the following to your list of variables:

TEMPSTG:9

This will reserve nine bytes, with the first byte named TEMPSTG. In your initial subroutine, initialize the first byte to the proper cursor positioning code so that the temperature will show up at the bottom right hand corner of the LCD display. Initialize TEMPSTG+4 with the ASCII code for a decimal point. Initialize TEMPSTG+6 with the AASCII@ code for the degree symbol which is coded as HDF. You also need to initialize the AF@ and then clear TEMPSTR+8 to serve as the end-of-string designator. When you display a temperature under 100.0OF, blank the hundreds digit with the ASCII code H20.

ADVANCE \d2Project Six
Temperature Measurement
Page 3 of 3

