Project Eight
Square-wave Output

Reference

Compare Mode (Section 6.4)

Project Description

Using the entered value from Project Seven, generate a squarewave on the PIC=s CCP1 output with a frequency equal to the displayed value. Initialize the frequency to 1000 Hz.

CCP1 Initialization
Refer to Figure 6-7 on page 104. Change the initialization of TRISC so that bit 2 is cleared. Add the initialization of CCP1CON (H09). Define a new sixteen-bit variable with the two one-byte variables HALFPERL and HALFPERH. Initialize these variables to one-half of the period of the initial frequency setting; that is, 500 microseconds or 500 cycles of the PIC=s internal 1 MHz clock. Thus initialize HALFPERH to H’01’ and HALFPERL to H’04’ since D’500’ = H’01F4’.

An interrupt to the CPU must be made to occur whenever the sixteen-bit register TMR1 equals CCPR1. Accordingly, the interrupt source must be enabled by setting the CCP1IE bit in the (bank 1) PIE1 register. You can use a bsf PIE1,CCP1IE instruction to do this since the power-on-reset content of the PIE1 register is H’00’ (refer to the “Value on POR” column of the table on page 250).

Be sure to take into account the bank location of each of these registers as you add code into the Initial subroutine.

CCP1 Interrupt Handler
Referring again to Figure 6-7, the sixteen-bit counter, TMR1, will increment continuously every microsecond (with our external crystal having a frequency of OSC = 4 MHz). A CCP1 interrupt will occur when the sixteen-bit counter, TMR1, equals the sixteen-bit register CCPR1. At the same time, the CCP1 pin will be either set or cleared, depending upon whether bit 0 of the CCP1CON register is cleared or set. The setting or clearing of the CCP1 pin takes place at this time even though the CPU is probably executing code in the mainline program at this time. That is, the CCP1/TMR1 circuitry controls the time of each edge, not the CPU. Thus, the output waveform can be made jitter-free by using the timer circuitry in this way.

The handler has four jobs. It must toggle an otherwise unused output pin to illustrate the jitter which can arise when the CPU is involved in generating output changes. (Use bit 5 of PORTA for this purpose, removing from your code any earlier use of this pin.) It must toggle bit 0 of CCP1CON (leaving the other bits unchanged) so that the opposite edge will occur on the CCP1 pin when the next interrupt occurs. It must add HALFPER to CCPR1 so that the next compare will occur exactly one-half of the period of the waveform after the one that has just occurred. (Add the lower bytes, increment the upper byte if a carry occurs, then add the upper bytes.) Finally, it must clear the CCP1IF flag in the PIR1 register. Note that if this flag is cleared first rather than last, erroneous behavior of the output waveform will occur occasionally, for some values of frequency. Why is this?

RPG_Count Subroutine
Modify this subroutine with the introduction of a new two-byte variable called FREQH,FREQL. Initialize it to D’1000’ = H’03E8’. Each time that the value of the frequency is changed in response to presses of the INC or DEC key, change both RPGSTR and FREQ. Thus, these should always represent the same number, the one in ASCII string form, the other as a two-byte binary number. Also, set a flag called RPGCHG when such a change occurs. This flag will serve as a signal to the Period subroutine, below, to recalculate the half-period value, HALFPER, from the new frequency.

Period Subroutine
This subroutine checks the RPGCHG flag. If set, the subroutine clears it, recalculates the value of HALFPER, and returns. If clear, the subroutine simply returns.

The relationship between HALFPER and FREQ is given by

FREQ x10= 1,000,000/(2xHALFPER)

or

HALFPER = 50,000/FREQ
where FREQ has units of 10 Hertz while HALFPER has units of clock cycles (or microseconds). Accordingly, we need to execute a division of a sixteen-bit unsigned binary number by a sixteen-bit unsigned binary number, which will produce a result that, even with FREQ=1, will fit in a sixteen-bit binary number. Use the FXD1616U subroutine in the math.asm file.

ADVANCE \d2Project Eight
Square-wave Output
Page 2 of 2

